
On a coupled system of equations describing pulse propagation in quadratic media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5855

(http://iopscience.iop.org/0305-4470/30/16/025)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5855–5867. Printed in the UK PII: S0305-4470(97)77015-X

On a coupled system of equations describing pulse
propagation in quadratic media

D Mihalache†, L-C Crasovan† and N-C Panoiu‡
† Institute of Atomic Physics, Department of Theoretical Physics, PO Box MG-6, Bucharest,
Romania
‡ Physics Department, New York University, 4 Washington Place, New York, NY 10003, USA

Received 7 August 1996, in final form 1 November 1996

Abstract. In the slowly varying envelope approximation we derive the basic equations that
describe the propagation of ultrashort pulses in quadratically nonlinear media in which a wave
at a fundamental frequency interacts with its second harmonic. In the governing equations we
keep linear terms that account for both second- and third-order dispersion and nonlinear terms
describing both nonlinear dispersion and self-steepening of the pulse edge. We then perform the
Painlev́e singularity structure analysis of the most general system of coupled partial differential
equations we derived. In a specific case, when third-order dispersion is negligible, by using a
Hirota-like method, we found zero- and one-parameter families of bright (fundamental frequency)
and dark (second harmonic) solitary waves which travel at a locked group velocity.

1. Introduction

Parametric interactions of intense light beams in materials with quadratic nonlinearities
offer a variety of fascinating phenomena such as the formation of two-wave solitons (or,
more properly, parametric solitary waves), and the mutual trapping, dragging and steering
of optical beams. Both (1+1) solitary waves (that is, one transverse dimension and one
propagation dimension) and higher-dimensional solitons exist in bulk crystals and in optical
waveguides made of quadratically nonlinear media [1–20]. Temporal solitary waves appear
to be more difficult to form with currently available experimental conditions, but both
(1+ 1) and (2+ 1) spatial solitary waves and the mutual trapping and dragging of two-
dimensional spatial solitary waves in a quadratic medium have been recently observed in
second harmonic generation experiments [21–23].

In this paper we concentrate on the so-called degenerate case of parametric interactions
of optical waves in quadratic nonlinear media in which a wave at a fundamental frequency
interacts with its second harmonic. We consider that the dispersive and nonlinear effects
are comparable in magnitude, thus the formation of temporal solitons (or, more properly,
temporal solitary waves) is possible by the mutual trapping of the fundamental and second
harmonic. The parametric solitary waves have potential applications in practical all-optical
logic gates because of lower power levels for the soliton formation by using a waveguide
made of a quadratic nonlinear medium as compared with a waveguide made of a cubic
nonlinear medium.

From Maxwell’s equations, by using the usual slowly varying envelope approximation
we derive a system of coupled equations governing the propagation of short pulses in a
quadratic medium. In the basic equations we keep both a linear term that describes the
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second-order dispersion and the higher-order linear term that accounts for the third-order
dispersion. Moreover, we keep nonlinear terms that describe the interaction between the
fundamental wave and its second harmonic and the higher-order terms that account for both
the nonlinear dispersion and the self-steepening of the pulse edge.

We apply the Painlev́e singularity structure analysis to the most general governing
equations we derived in order to find out whether the coupled nonlinear partial differential
equations pass the Painlevé test for integrability. The Painlevé analysis, as introduced by
Weiss, Tabor and Carnevale (WTC) in [24], is one of the systematic methods to identify
the integrable cases of the nonlinear partial differential equations [24–30], that is, to check
whether the solutions are free from movable critical manifolds. Later, this method was
further improved and refined (see, e.g. [31] and the references therein) but, as one will see,
it is enough to use the WTC method to prove that the system of partial differential equations
which we derived in this paper fails to pass the Painlevé test.

The paper is organized as follows. In section 2 we derive the governing system of
partial differential equations describing the evolution of short pulses in a quadratic medium.
In section 3 the Painlevé test is performed in detail in the case of the most general system.
The results of the Painlevé analysis for other simpler models describing the propagation
of optical pulses in quadratic media are also briefly discussed. In section 4 a Hirota-like
method [32] is used to find out the exact solitary wave solution in a specific case when
third-order dispersion is negligible. In section 5 we briefly present the conclusions.

2. Derivation of the governing equations

In this section we obtain the equations that describe the evolution of short optical pulses in
quadratic media. The derivation closely follows the one performed by Menyuket al [6],
the difference is that we keep terms in third order in the linear contribution and first order
in the nonlinear contribution.

We assume that the fundamental and the second-harmonic waves are propagating in
the z-direction and are tightly confined in the transverse direction. Thus, we have a
waveguide structure characterized by the normal modes91 and92 for the fundamental
and second-harmonic waves, respectively. The electric fields of the fundamental and the
second-harmonic waves are:

E1(x, y, z, t) = E1(z, t)91(x, y)

E2(x, y, z, t) = E2(z, t)92(x, y).
(1)

We then write:
E1(z, t) = A1(z, t)exp[ik1(ω0)z − iω0t ]

E2(z, t) = A2(z, t)exp[ik2(2ω0)z − 2iω0t ]
(2)

whereω0 is the central frequency of the fundamental wave, andk1(ω) and k2(ω) are the
wavenumbers of the fundamental and second harmonic, respectively. Here the indices of the
wavenumbers stand for the different branches of the dispersion relation. The total electric
field is:

E(z, t) = E1(z, t)e1+ E1
∗(z, t)e∗1 + E2(z, t)e2+ E2

∗(z, t)e∗2 (3)

wheree1 ande2 are complex unit vectors that describe the polarization of the modes atω0

and 2ω0. We assume that the electric displacement vectorD has contributions that are both
linear and quadratic, thus we may set

D(z, t) = E(z, t)+ 4π
∫ t

−∞
dt ′χ(1)(t − t ′) ·E(z, t)
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+4π
∫ t

−∞
dt ′
∫ t

−∞
dt ′′χ(2)(t − t ′, t − t ′′) ·E(z, t′)E(z, t′′) (4)

where χ(1) is a second-rank tensor andχ(2) is a third-rank tensor. The total electric
displacement vector can be written as

D(z, t) = D1(z, t)e1+D∗1(z, t)e∗ +D2(z, t)e2+D∗2(z, t)e∗ (5)

where

D1(z, t) = U1(z, t)exp[ik1(ω0)z − iω0t ]

D2(z, t) = U2(z, t)exp[ik2(2ω0)z − 2iω0t ].
(6)

Next we define

χ1
(1)(ω) =

∫ ∞
−∞

dt [e
∗ · χ(1) · e1] exp(iωt)

χ2
(1)(ω) =

∫ ∞
−∞

dt [e
∗ · χ(1) · e2] exp(iωt)

(7)

with χ(1)(t) = 0 if t < 0. We also define

χ1
(2)(2ω,−ω) =

∫ ∞
−∞

dt
∫ ∞
−∞

dt ′ [e∗ · χ(2)(t, t ′) · e∗1e2] exp(2iωt ′ − iωt)

χ2
(2)(ω, ω) =

∫ ∞
−∞

dt
∫ ∞
−∞

dt ′[e∗ · χ(2)(t, t ′) · e1e1] exp(iωt ′ + iωt).
(8)

In the following we proceed as in [6] and we define the following quantities:

ε1 = 1+ 4πχ1
(1)(ω0) ε1

′ = 4π
∂χ1

(1)

∂ω

∣∣∣∣
ω0

ε1
′′ = 4π

∂2χ1
(1)

∂ω2

∣∣∣∣
ω0

ε1
′′′ = 4π

∂3χ1
(1)

∂ω3

∣∣∣∣
ω0

(9)

ε2 = 1+ 4πχ2
(1)(ω0) ε2

′ = 4π
∂χ2

(1)

∂ω

∣∣∣∣
2ω0

ε2
′′ = 4π

∂2χ2
(1)

∂ω2

∣∣∣∣
2ω0

ε2
′′′ = 4π

∂3χ2
(1)

∂ω3

∣∣∣∣
2ω0

(10)

λ1 = 4π
∂χ1

(2)

∂ω1

∣∣∣∣
2ω0,−ω0

λ2 = 4π
∂χ1

(2)

∂ω2

∣∣∣∣
2ω0,−ω0

λ = 4π
∂χ2

(2)

∂ω1

∣∣∣∣
ω0,ω0

= 4π
∂χ2

(2)

∂ω2

∣∣∣∣
ω0,ω0

(11)

ε1
(2) = 4πχ1

(2)(2ω0,−ω0) ε2
(2) = 4πχ2

(2)(ω0, ω0) (12)

k′1 =
dk1

dω

∣∣∣∣
ω0

k′′1 =
d2k1

dω2

∣∣∣∣
ω0

k′′′1 =
d3k1

dω3

∣∣∣∣
ω0

(13)

k′2 =
dk2

dω

∣∣∣∣
2ω0

k′′2 =
d2k2

dω2

∣∣∣∣
2ω0

k′′′2 =
d3k2

dω3

∣∣∣∣
2ω0

(14)

K1 = ω2
0

k1c2
ε
(2)
1 K2 = 2ω2

0

k2c2
ε
(2)
2 . (15)
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Finally, we obtain the following system of coupled partial differential equations using
the slowly varying envelope approximation and keeping terms in third order in the linear
contribution and first order in the nonlinear contribution:

i
∂A1

∂z
+ ik′1

∂A1

∂t
− 1

2
k′′1
∂2A1

∂t2
− i

6

(
k′′′1 +

3k′′1k
′
1

k1

)
∂3A1

∂t3
exp(−i1kz)

+2iω0

k1c2
ε
(2)
1

∂

∂t

(
A∗1A2

)
exp(−i1kz)+ i

ω0
2

k1c2

(
λ1A

∗
1
∂A2

∂t
+ λ2A2

∂A∗1
∂t

)
× exp(−i1kz)+K1A

∗
1A2 exp(−i1kz) = 0 (16)

i
∂A2

∂z
+ ik′2

∂A2

∂t
− 1

2
k′′2
∂2A2

∂t2
− i

6

(
k′′′2 +

3k′′2k
′
2

k2

)
∂3A2

∂t3
exp(i1kz)

+2iω0

k2c2
ε
(2)
2

∂

∂t
(A2

1) exp(i1kz)+ λ2iω2
0

k2c2

∂

∂t
(A2

1) exp(i1kz)

+K2A
2
1 exp(i1kz) = 0 (17)

where1k = 2k1(ω0)− k2(2ω0).
These equations can be put into a normalized form:

i
∂a1

∂ξ
− r

2

∂2a1

∂s2
− i

6

(
k′′′1 + 3k′′1k

′
1

k1

)
τ |k′′1|

∂3a1

∂s3
+ a∗1a2 exp(−iβξ)+ 2i

ω0τ

∂

∂s
(a∗1a2) exp(−iβξ)

+i

(
λ1

ε
(2)
1 τ

a∗1
∂a2

∂s
+ λ2

ε
(2)
1 τ

∂a∗1
∂s
a2

)
exp(−iβξ) = 0 (18)

i
∂a2

∂ξ
− iδ

∂a2

∂s
− α

2

∂2a2

∂s2
− i

6

(
k′′′2 + 3k′′2k

′
2

k2

)
τ |k′′1|

∂3a2

∂s3
+ a2

1 exp(iβξ)+ i

ω0τ

∂

∂s
(a2

1) exp(iβξ)

+i
λ

ε
(2)
2 τ

∂

∂s
(a2

1) exp(iβξ) = 0 (19)

where

ξ = |k
′′
1|
τ 2
z s = t

τ
− k

′
1

τ
z δ = (k′1− k′2)τ

|k′′1|
α = k′′2
|k′′1|

β = 1kτ 2

|k′′1|
a1 = |K1K2|1/2τ 2

|k′′1|
A1 a2 = K1τ

2

|k′′1|
A2 r = sgn(k′′1).

(20)

We mention that the last three terms in equation (18) account for the self-steepening of
the pulse edge and the nonlinear dispersion. Analogously, the last two terms in equation (19)
account for the self-steepening of the pulse edge and the nonlinear dispersion, respectively.
In equations (18)–(20),r = −1 for the case of anomalous dispersion at the fundamental
frequency andr = 1 for the case of normal dispersion at the fundamental frequency,α is the
ratio of the second-order dispersions at the two frequencies,δ is the group-velocity mismatch
parameter,τ is the input pulse duration, andβ is the wavevector mismatch parameter.

In order to observe these temporal solitary waves one must first have materials with
strong quadratic nonlinearities, so that the waves undergo a 2π phase shift after propagating
a few millimetres in a waveguide of the order of 1 cm. In order to have solitary
wave formation we need a sufficiently large second-order dispersion to compensate for
the quadratic nonlinearity. As an example, we consider a LiNbO3 waveguide for which
χ(2) = 12 pm V−1 and the wavelength of the fundamental wave isλ = 1.06 µm. The
typical second-order dispersion is|k′′1| = 0.1 ps2 m−1. For an input pulse durationτ = 15 fs
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we have a dispersion lengthld = τ 2

|k′′1 | ' 2 mm, much less than the typical length of a
few centimetres of the sample. Thus, for input beam profiles deviating strongly from the
solitary wave shape, a sample of a few centimetres long allows the formation of parametric
solitary waves. At the same time, with such an ultrashort pulse the higher-order terms in
equations (18), (19), that is, the terms accounting for the self-steepening of the pulse edge
and the nonlinear dispersion come into the play.

We mention that in another physical setting, coupled partial differential equations which
extend the nonlinear Schrödinger equation and describe the dynamics of femtosecond optical
pulses in birefringent fibres were introduced [33, 34] and although, in general, they do not
pass the Painlevé test for integrability, coupled solitary waves were provided by using the
Hirota technique [34].

3. Painlev́e singularity structure analysis

In order to check for the integrability of a system of partial differential equations we analyse
whether the system has the Painlevé property as introduced by Weisset al [24]. The method
involves expanding the solution in a Laurent series about a singular or pole manifold. Also,
the method gives rise to a powerful formalism from which one may deduce the Lax pairs,
the B̈acklund transformations, the Hirota equations, the motion invariants, symmetries and
commuting flows, and the geometrical structure of the phase space [30].

Next we rewrite the system (18), (19) in the form:

iq1x − r
2
q1t t + q∗1q2e−iβx + iγ1q1t t t + iα1q

∗
1t q2e−iβx + iα2q

∗
1q2te

−iβx = 0

iq2x − iδq2t − α
2
q2t t + iγ2q2t t t + q2

1eiβx + iγ3(q
2
1)te

iβx = 0
(21)

where

γ1,2 = −1

6

(
k′′′1,2+

3k′′1,2k
′
1,2

k1,2

)
τ |k′′′1 |

α1,2 = 2

ω0τ
+ λ1,2

ε
(2)
1 τ

γ3 = 1

ω0τ
+ λ

ε
(2)
2 τ

. (22)

Here the subscriptsx and t denote the partial derivatives with respect tox and t .
In this section we perform the Painlevé test for the following system of coupled partial

differential equations:

iq1x − r
2
q1t t + q∗1q2+ iγ1q1t t t + iα1q

∗
1q2t + iα2q

∗
1t q2 = 0

iq2x − iδq2t − α
2
q2t t + q2

1 + iγ2q2t t t + iγ3(q
2
1)t = 0.

(23)

For the sake of simplicity we took the normalized wavevector mismatch parameterβ = 0 in
system (21) without restricting the generality of the Painlevé singularity structure analysis.

In order to study the integrability properties of system (23), we rewrite it in terms of four
complex functionsa, b, c, andd defined byq1 = a, q2 = b, q∗1 = c, q∗2 = d. Consequently,
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we have the following equations:

iax − r
2
att + cb + iγ1attt + iα1cbt + iα2ctb = 0

ibx − iδbt − α
2
btt + a2+ iγ2bttt + iγ3(a

2)t = 0

−icx − r
2
ctt + ad − iγ1cttt − iα1adt − iα2atd = 0

−idx − α
2
dtt + iδdt + c2− iγ2dttt − iγ3(c

2)t = 0.

(24)

The Painlev́e analysis in the formulation of Weisset al [24] essentially consists of three
stages: (i) determining the leading-order behaviour; (ii) identifying the resonances, and (iii)
verifying that a sufficient number of arbitrary functions exists without the introduction of
movable critical singularity manifolds. To start with, let us introduce the following series
for the four functionsa, b, c, d:

a = 8p1
∑
j>0

aj (x)8
j b = 8p2

∑
j>0

bj (x)8
j

c = 8p3
∑
j>0

cj (x)8
j d = 8p4

∑
j>0

dj (x)8
j

(25)

with the Kruskal ansatz [25]:8(x, t) = t − 9(x). Here pi, 1 6 i 6 4 are negative
integers. By introducing the above series into equations (23) and equating the leading terms
we obtain:

p1− 3= p2+ p3− 1

p2− 3= 2p1− 1

p3− 3= p1+ p4− 1

p4− 3= 2p3− 1.

(26)

From this system we obtain the unique solutionpi = −2, 1 6 i 6 4 and the following
equations for the functionsa0, b0, c0 andd0:

12γ1a0+ b0c0(α1+ α2) = 0

6γ2b0+ γ3a
2
0 = 0

12γ1c0+ a0d0(α1+ α2) = 0

6γ2d0+ γ3c
2
0 = 0.

(27)

In system (27) not all of the four functions are independent. This can easily be seen, as
independent equations can be chosen for the first two equations of system (27) and the
equation: b0c

2
0 − a2

0d0 = 0. Therefore, at this stage we conclude that one of these four
functions is arbitrary. Now we find the resonances, that is, the powers at which the arbitrary
functions can enter into the series. Thus we substitute the following expressions into the
coupled system (23):

a = a08
−2+ aj8j−2

b = b08
−2+ bj8j−2

c = a08
−2+ cj8j−2

d = a08
−2+ dj8j−2.

(28)



On a coupled system of equations describing pulse propagation 5861

Keeping the leading-order terms together, we obtain a linear system of four algebraic
equations inaj , bj , cj , anddj :

γ1(j − 2)(j − 3)(j − 4)aj + [α1(j − 2)− 2α2]c0bj + [α2(j − 2)− 2α1]b0cj = 0

γ1(j − 2)(j − 3)(j − 4)cj + [α1(j − 2)− 2α2]d0aj + [α2(j − 2)− 2α1]a0dj = 0

γ2(j − 2)(j − 3)(j − 4)bj + 2γ3(j − 4)a0aj = 0

γ2(j − 2)(j − 3)(j − 4)dj + 2γ3(j − 4)c0cj = 0.

(29)

To have a non-trivial solution foraj , bj , cj , anddj , the corresponding determinant must be
zero:

1(j, r) = (1+ r)2(j − 2)4(j − 3)4(j − 4)2

−288[j − 2(1+ r)](1+ r)(j − 2)2(j − 3)2(j − 4)

+1442[j − 2(1+ r)]2− 144[rj − 2(1+ r)]2(j − 2)2(j − 3)2 = 0 (30)

wherer = α1/α2. It is easily verified that1(j, r) = P1(j, r)P2(j, r), where

P1(j, r) = (j + 1)(j − 6)[j3(1+ r)− 9j2(1+ r)+ j (26r + 38)− 48(r + 1)] (31)

P2(j, r) = j (j2− 5j + 18)[j2(1+ r)− 9j (1+ r)+ 26r + 14]. (32)

The resonance atj = −1 corresponds to the arbitrariness of8 itself and the resonance at
j = 0 corresponds to the fact that one of the four functionsa0, b0, c0, andd0 is arbitrary.
Because at least two of the zeros of the polynomialP2(j, r) are complex, we conclude that
the coupled system (23) fails to pass the Painlevé test.

Next we briefly present the Painlevé analysis for other two coupled nonlinear partial
differential equations coming from system (23). First, we perform the Painlevé singularity
analysis for the following equations [6–10]:

iq1x − r
2
q1t t + q∗1q2 = 0

iq2x − iδq2t − α
2
q2t t + q2

1 = 0.
(33)

These coupled equations describe the self-action of light in parametric wave interactions
in nonlinear quadratic media in the presence of different group velocities between the
fundamental frequency wave and the second harmonic when the third-order dispersion,
as well as the nonlinear terms which account for the self-steepening of the pulse edge and
the nonlinear dispersion, are negligible.

In this case, in a similar way as before, we found that the equation for the resonances
is as follows

(j + 1)j (j − 5)(j − 6)(j2− 5j + 12)(j2− 5j + 18) = 0. (34)

Because four of the resonances are complex we conclude that this system does not possess
the Painlev́e property.

Although system (33) fails to pass the Painlevé test, the existence has recently [20] been
shown of a two-parameter family of ‘bright–bright’ solitary waves which travel at a locked
velocity. These parametric solitary waves are chirped and form due to the interplay of the
second-order dispersion, the nonlinear interaction and the temporal walk-off which comes
from the different group velocities of the interacting waves.

Finally, we perform the Painlevé test for the following system:

iq1x − r
2
q1t t + q∗1q2+ iα1q

∗
1q2t + iα2q

∗
1t q2 = 0

iq2x − iδq2t − α
2
q2t t + q2

1 + iγ3(q
2
1)t = 0.

(35)
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This system comes from the general system (23) by neglecting the terms accounting for
the third-order dispersion. Imposing the resonances to be integers we obtainα1 = α2.
Thus, in this case the resonances are found to be:j = −1, 0, 2, 2, 2, 2, 2, 3. However,
the system does not pass the Painlevé test because for the resonancej = 0 all the four
functions a0, b0, c0 and d0 are fixed instead of one of them being arbitrary. Although
system (35) does not pass the Painlevé test, we will be able to find a symbiotic pair of
bright (fundamental frequency) and dark (second harmonic) solitary waves by using the
direct Hirota-like method.

4. Hirota-like method and the exact ‘bright–dark’ solitary wave solutions

In this section we shall find out the exact solitary wave solutions of the following system
of coupled equations by using a Hirota-like direct method [32]:

iq1x − r
2
q1t t + q∗1q2e−iβx + id(q∗1q2)te

−iβx = 0

iq2x − iδq2t − α
2
q2t t + q2

1eiβx + iγ3(q
2
1)te

iβx = 0.
(36)

This system comes from the general equations (21) by neglecting the third-order dispersion
terms and takingα1 = α2 = d.

Recently [19], a family of ‘bright–dark’ parametric solitary waves has been found in a
second-harmonic generation setting. These solitary waves form from the interplay between
the group-velocity difference and the nonlinear interaction between the two waves (the
second-order dispersion at both frequencies being neglected). In the following we find that
the interplay of the second-order dispersion, group-velocity difference, quadratic nonlinearity
and self-steepening effect does permit us to be sustained symbiotic solitary waves that are
of the bright type for the fundamental frequency wave and of the dark type for the second
harmonic.

In order to construct the Hirota-like bilinear form we first introduce the new functions
a1,2(x, t):

q1(x, t) = a1(x, t)exp[i(ω1t + κ1x)]

q2(x, t) = a2(x, t)exp[i(ω2t + κ2x)]
(37)

whereω1,2 are the corrections to the corresponding frequencies andκ1,2 are the corrections
to the corresponding wavenumbers. System (36) becomes:

a1x + ν1a1t + µ1a1+ i
r

2
a1t t − iγ1a

∗
1a2 exp[i(�t + κx)] + d{a∗1a2 exp[i(�t + κx)]}t = 0

a2x + ν2a2t + µ2a2+ i
α

2
a2t t − iγ2a

2
1 exp[−i(�t + κx)] + γ3{a2

1 exp[−i(�t + κx)]}t = 0

(38)

where

ν1 = −rω1 µ1 = i

(
κ1− rω

2
1

2

)
γ1 = 1− dω1

ν2 = −(δ + αω2) µ2 = i

(
κ2− δω2− αω

2
2

2

)
γ2 = 1− γ3ω2

� = ω2− 2ω1 κ = κ2− 2κ1− β.

(39)

Let us now take the Hirota transformation in the form:

a1(x, t) = F(x, t)

G(x, t)
a2(x, t) = E(x, t)

G(x, t)
(40)
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whereF,E are complex functions, andG is a real function. Using the Hirota bilinear
operators:

Dm
t D

n
x (FG)

def=
(
∂

∂t
− ∂

∂t ′

)(
∂

∂x
− ∂

∂x ′

)
F(x, t)G(x ′, t ′)|t ′=t,x ′=x (41)

system (38) becomes:

1

G2
(Dx + ν1Dt + µ1)(FG)− iγ1

F ∗E
G2

exp[i(�t + κx)]

+ ∂
∂t

(
i
r

2

1

G2
Dt(FG)+ d F

∗E
G2

exp[i(�t + κx)]
)
= 0

1

G2
(Dx + ν2Dt + µ2)(EG)− iγ2

F 2

G2
exp[−i(�t + κx)]

+ ∂
∂t

(
i
α

2

1

G2
Dt(EG)+ γ3

F 2

G2
exp[−i(�t + κx)]

)
= 0.

(42)

We see that these equations can be satisfied if we impose:

i
r

2
Dt(FG)+ dF ∗E exp[i(�t + κx)] = 0

i
α

2
Dt(EG)+ γ3F

2 exp[−i(�t + κx)] = 0

(Dx + ν1Dt + µ1)(FG)− iγ1F
∗E exp[i(�t + κx)] = 0

(Dx + ν2Dt + µ2)(EG)− iγ2F
2 exp[−i(�t + κx)] = 0.

(43)

From (43) we easily obtain:

(Dx + ρ1Dt + µ1)(FG) = 0

(Dx + ρ2Dt + µ2)(EG) = 0
(44)

whereρ1 = ν1− γ1r

2d andρ2 = ν2− γ2α

2γ3
. In order to obtain the exact solitary wave solutions,

we proceed in the standard way. Thus, we assume:

F = εf1 G = 1+ ε2g1 E = e0+ ε2e1 (45)

where ε is an arbitrary parameter which is finally set equal to 1. Heree0 is a complex
constant,g1 is a real function andf1 ande1 are complex functions. Substituting (45) into
system (43) and then collecting the terms with the same power inε we are left with a system
of coupled equations forf1, g1, e0 ande1. We seek for the functionsg1, f1 ande1 having
an exponential dependence of the variablesx and t . From the compatibility conditions for
the system of coupled equations forf1, g1, e1 ande0 it results that:

κ2− δω2− αω
2
2

2
= 0

ν1− γ1r

2d
= ν2− γ2α

2γ3

i(κ + ρ1�)+ 2µ1 = 0.

(46)

One can easily find the expressions forg1, f1, e1 ande0:

g1(x, t) = exp(2ξ) (47)

f1 = η

ρ1

(
αr

dγ3

)1/2

exp(ξ) exp

[
i

2
(�t + κx + θ)

]
(48)
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e1 =
(
− r

2d

)( η
ρ1
+ i
�

2

)
exp(2ξ) exp

[
i
(π

2
+ θ

)]
(49)

e0 =
(
− r

2d

)(
− η
ρ1
+ i
�

2

)
exp

[
i
(π

2
+ θ

)]
. (50)

By using these expressions one obtains:

a1(x, t) = η

2ρ1

(
αr

dγ3

)1/2

sech(ξ) exp

[
i

2
(�t + κx + θ)

]
(51)

a2(x, t) =
(
− r

2d

)[( η
ρ1

)2

+ �
2

4

]1/2
sinh(ξ + iϕ)

cosh(ξ)
exp

[
i
(π

2
+ θ

)]
(52)

where

ξ = η
(
x − t

ρ1

)
+ ξ0 ϕ = arctan

(
�ρ1

2η

)
ρ1 = − rω1

2
− r

2d

with � = ω2 − 2ω1, η, ϕ, θ being integration constants. Finally, we obtain the following
expressions forq1,2:

q1(x, t) = η

2ρ1

(
αr

dγ3

)1/2

sech(ξ) exp

[
i

2
(ω2t + κ2x − βx + θ)

]
(53)

q2(x, t) =
(
− r

2d

)[( η
ρ1

)2

+ �
2

4

]1/2
sinh(ξ + iϕ)

cosh(ξ)
exp

[
i
(
ω2t + κ2x + π

2
+ θ

)]
. (54)

From constraints (46) we obtain the following system of equations forω1,2:

rω1

d
− αω2

2γ3
= β (55)

rω1

2
− αω2

2
= δ − r

2d
+ α

2γ3
. (56)

Here we have two distinct cases to analyse:
(a) If d = 2γ3 thenω1 = 2γ3

r
β + α

r
ω2, ω2 being a free parameter. In addition, we have

a compatibility condition for the linear system (55), (56):dβ2 = δ + 2α−r
2d . In this case the

solution (53), (54) constitutes a one-parameter family of bright–dark solitary waves.
(b) If d 6= 2γ3 thenω1,2 can be easily obtained by solving the linear system (55), (56).

Thus, in this case the correctionsω1,2 to the frequencies of the fundamental wave and the
second harmonic are fixed and the solution (53), (54) has no free parameters.

The modulational instability of the background continuous wave is the preferential
mechanism of instability of coupled solitary waves which contain dark components. We
mention that the symbiotic ‘bright–dark’ pair of solitary waves found recently in [19] can be
modulationally stable. We expect that the ‘bright–dark’ solitary wave we found can also be
modulationally stable. However, the rigorous stability analysis of the ‘bright–dark’ solitary
waves we found is an important issue and deserves a separate study.

In figures 1 and 2 we show the shape of the pair of ‘bright–dark’ solitary waves for
the following set of parameters:r = −1, d = −1, α = 1, γ3 = 1, η

ρ1
= 1, δ = 0. For

this choice of the parameters the corrections to the frequencies are fixed and there are no
free parameters of the exact solitary wave solution. In figure 1 we show the variation of
the intensity as a function of time for the value of the normalized wavevector mismatch
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Figure 1. The shape of the intensity of the fundamental wave (full curve) and the second
harmonic (dotted curve) for the following set of parameters:r = −1, d = −1, α = 1, γ3 = 1,
η
ρ1
= 1, δ = 0. Here the normalized wavevector mismatch parameterβ = 0.

Figure 2. Same as in figure 1 but with the normalized wavevector mismatch parameterβ = 2.

parameterβ = 0. In this case the intensities of the fundamental wave and the second
harmonic have the simple expressions:

|q1|2 = 1
4 sech2(t)

|q2|2 = 1
4 tanh2(t).

(57)

Figure 2 presents the shape of the intensities of both waves forβ = 2. In this case the
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fundamental wave and second harmonic have the following intensities:

|q1|2 = 1
4 sech2(t)

|q2|2 = 1
4[tanh2(t)+ 4].

(58)

We see that for this choice of parameters the background intensity for the dark wave increases
with the mismatch parameterβ.

5. Conclusions

In this paper we have derived the coupled system of partial differential equations describing
pulse propagation of ultrashort pulses in a quadratic medium, by keeping linear terms that
account for both second- and third-order dispersion and nonlinear terms describing both
nonlinear dispersion and self-steepening of the pulse edge. When the third-order dispersion
is negligible, by using a Hirota-like method, we have found zero- and one-parameter families
of symbiotic solitary waves. This parametric solitary wave has the interesting property that
it is of a bright-type concerning the fundamental wave and of a dark-type concerning the
second harmonic.
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