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Abstract. In the slowly varying envelope approximation we derive the basic equations that
describe the propagation of ultrashort pulses in quadratically nonlinear media in which a wave
at a fundamental frequency interacts with its second harmonic. In the governing equations we
keep linear terms that account for both second- and third-order dispersion and nonlinear terms
describing both nonlinear dispersion and self-steepening of the pulse edge. We then perform the
Painlee singularity structure analysis of the most general system of coupled partial differential
equations we derived. In a specific case, when third-order dispersion is negligible, by using a
Hirota-like method, we found zero- and one-parameter families of bright (fundamental frequency)
and dark (second harmonic) solitary waves which travel at a locked group velocity.

1. Introduction

Parametric interactions of intense light beams in materials with quadratic nonlinearities
offer a variety of fascinating phenomena such as the formation of two-wave solitons (or,
more properly, parametric solitary waves), and the mutual trapping, dragging and steering
of optical beams. Both (1+1) solitary waves (that is, one transverse dimension and one
propagation dimension) and higher-dimensional solitons exist in bulk crystals and in optical
waveguides made of quadratically nonlinear media [1-20]. Temporal solitary waves appear
to be more difficult to form with currently available experimental conditions, but both
(1+ 1) and (2 + 1) spatial solitary waves and the mutual trapping and dragging of two-
dimensional spatial solitary waves in a quadratic medium have been recently observed in
second harmonic generation experiments [21-23].

In this paper we concentrate on the so-called degenerate case of parametric interactions
of optical waves in quadratic nonlinear media in which a wave at a fundamental frequency
interacts with its second harmonic. We consider that the dispersive and nonlinear effects
are comparable in magnitude, thus the formation of temporal solitons (or, more properly,
temporal solitary waves) is possible by the mutual trapping of the fundamental and second
harmonic. The parametric solitary waves have potential applications in practical all-optical
logic gates because of lower power levels for the soliton formation by using a waveguide
made of a quadratic nonlinear medium as compared with a waveguide made of a cubic
nonlinear medium.

From Maxwell's equations, by using the usual slowly varying envelope approximation
we derive a system of coupled equations governing the propagation of short pulses in a
guadratic medium. In the basic equations we keep both a linear term that describes the
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second-order dispersion and the higher-order linear term that accounts for the third-order
dispersion. Moreover, we keep nonlinear terms that describe the interaction between the
fundamental wave and its second harmonic and the higher-order terms that account for both
the nonlinear dispersion and the self-steepening of the pulse edge.

We apply the Painleé¥ singularity structure analysis to the most general governing
equations we derived in order to find out whether the coupled nonlinear partial differential
equations pass the Painéetest for integrability. The Painlévanalysis, as introduced by
Weiss, Tabor and Carnevale (WTC) in [24], is one of the systematic methods to identify
the integrable cases of the nonlinear partial differential equations [24—30], that is, to check
whether the solutions are free from movable critical manifolds. Later, this method was
further improved and refined (see, e.g. [31] and the references therein) but, as one will see,
it is enough to use the WTC method to prove that the system of partial differential equations
which we derived in this paper fails to pass the Paialesst.

The paper is organized as follows. In section 2 we derive the governing system of
partial differential equations describing the evolution of short pulses in a quadratic medium.
In section 3 the Painlévtest is performed in detail in the case of the most general system.
The results of the Painlévanalysis for other simpler models describing the propagation
of optical pulses in quadratic media are also briefly discussed. In sett® Hirota-like
method [32] is used to find out the exact solitary wave solution in a specific case when
third-order dispersion is negligible. In section 5 we briefly present the conclusions.

2. Derivation of the governing equations

In this section we obtain the equations that describe the evolution of short optical pulses in
guadratic media. The derivation closely follows the one performed by Meeyuak [6],

the difference is that we keep terms in third order in the linear contribution and first order
in the nonlinear contribution.

We assume that the fundamental and the second-harmonic waves are propagating in
the z-direction and are tightly confined in the transverse direction. Thus, we have a
waveguide structure characterized by the normal mobesnd W, for the fundamental
and second-harmonic waves, respectively. The electric fields of the fundamental and the
second-harmonic waves are:

Ei(x,y, 2, 1) = E1(z, HWa(x, y)

1
Ex,y, 2, 1) = Ea(z, ) Wa(x, y). @)

We then write:
Ei(z,t) = A1(z, t) expliky(wo)z — iwot] @

Ex(z,t) = Aa(z, t) explika(2wo)z — 2iwot]

wherewy is the central frequency of the fundamental wave, an@) and k2(w) are the
wavenumbers of the fundamental and second harmonic, respectively. Here the indices of the
wavenumbers stand for the different branches of the dispersion relation. The total electric
field is:

E(z,1) = Ei(z, t)e1 + E1*(z, 1)e] + Ea(z, e + E2*(z, 1)e; )
wheree; ande, are complex unit vectors that describe the polarization of the modes at

and 209. We assume that the electric displacement veBdras contributions that are both
linear and quadratic, thus we may set

t
D(z,1) = E(z,1) + 4:1/ dt'xV (@ — 1) - E(z, t)
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t t
+4r / dt’/ dt’"x?t -1, t — ") - E(z,tE(z,t") (4)

where xV is a second-rank tensor ang? is a third-rank tensor. The total electric
displacement vector can be written as

D(z,t) = Di(z,t)er + Di(z, t)e; + Da(z, t)ez + D3(z, t)e, (5)
where

Di(z,1) = Ui(z, t) expliki(wo)z — iwot]

6
Dy(z,t) = Ua(z, t) explika(2w0)z — 2iwot]. ©)

Next we define

1P () = f dr [e,* - xP - es] explior)
oo ™
x2P(w) = / dr[e.* - x P - es] explior)
with x®(r) =0 if + < 0. We also define

o0 o0
1®? w, —w) = / dt/ dt’' [e,* - x@(t, 1) - eles] expiot’ — iwt)
—0o0 —00

o0 o0 8)
x2? (w, ) :/ dt/ dt'[es* - x@ (1, 1) - eres] expliot’ + iwt).
—0Q —00
In the following we proceed as in [6] and we define the following quantities:
9y D
€1 =1+ 47 1V (wo) € =4n )a(l
O |y
9)
” 82X1(1) " 33X1(1)
€' =4n e =4
dw? |, d3 |,
9y,
€2 = 1+ 47 2™ (wo) & =4n )3(2
w 20)0
(10)
" BZXZ(D " BBXZ(D
& =4 ———— e =4
dw? 200 dw3 200
dy,@ dy,1@
)\1 =4 s )\2 =4x A
w1 2wg, —wg w2 2w0,—wo
dy,?@ dy,@
A= dn X2 — 47 22 (11)
D1 gm0 dw2 w0, wo
€1? = 4m x1® (2wo, —wo) €2? = 4r x2,® (wo, wo) (12)
dky %k, Bk
k/ _ " 7 — " — 13
17 dow o 17 dw? o ! dw? |, (13)
dko d?ks d®ks
k= = ky= > 7= 3 (14)
dw 200 dw? 20 dw3 2w
2 2
w 2w
Ki= 0@ Ky= 02 15
17 ket 27 fpc22 (15)
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Finally, we obtain the following system of coupled partial differential equations using
the slowly varying envelope approximation and keeping terms in third order in the linear
contribution and first order in the nonlinear contribution:

iaAl i dA1 1k,,82A1 i, 3Kk 3%A1 exp(—iAkz)
9z Yar T2t az e\t Tk ) o ¢
2iwo Ne 3 dA dA%
Al Az) exp(—iAk | AMAT—— + 1A
kc2 8( 2) exp( )+ 141~ +228t
x exp(—iAkz) + K1AT A exp(—lAkz) (16)
dAy . A, 1 9%A, i 3k k! 83
i 4ik,—e — k)t — (kY 272 exp(iAk
bz "2 T 22 g 6(2+k2 exXpiAkz)
2Ia)0 (2) a0 2iw 2
+k— —(A )exp(iAkz) +Ak 23—(A D) expiAkz)
+KA2explinkz) =0 17)

where Ak = 2k1(wg) — ko(2wo).
These equations can be put into a normalized form:
day  rd%ay i (k’l”

)83611
dE 2352 6 Tl ds3

3k1k;

o
+ ajaz exp(—ipEg) + —f(alaz) exp(—ipé)

. A1 dasz Ao 80*
i ——a;—= exp(—i 18
+ (652)1_“1 9s + E:(lz) s aZ) FX ,3%') ( )
1 3k k
day da, «d%ar, i <k2 + 2) 33%a, 2
i o '5¥—§ 02 6 Tk 553 +aleXp(|,3§)+7*(al)eXp(lﬂ§)
A0 .
+'<Ti(ai) expiipg) =0 (19)
€, TO0S
where
|k”| t K (k) — k)t 4
= RS ] T 0)
p Akt? |K1K2|1/2t2A KltzA —
= 7 a1 = ——75; A1 az = ” 2 r= .
14 14 14 '

We mention that the last three terms in equation (18) account for the self-steepening of
the pulse edge and the nonlinear dispersion. Analogously, the last two terms in equation (19)
account for the self-steepening of the pulse edge and the nonlinear dispersion, respectively.
In equations (18)—(20); = —1 for the case of anomalous dispersion at the fundamental
frequency and = 1 for the case of normal dispersion at the fundamental frequenisythe
ratio of the second-order dispersions at the two frequengisghe group-velocity mismatch
parameterz is the input pulse duration, anglis the wavevector mismatch parameter.

In order to observe these temporal solitary waves one must first have materials with
strong quadratic nonlinearities, so that the waves undergo ghase shift after propagating
a few millimetres in a waveguide of the order of 1 cm. In order to have solitary
wave formation we need a sufficiently large second-order dispersion to compensate for
the quadratic nonlinearity. As an example, we consider a LiNb@veguide for which
x® = 12 pm V! and the wavelength of the fundamental waveiis= 1.06 um. The
typical second-order dispersion|ig| = 0.1 pg m~1. For an input pulse duration= 15 fs
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we have a dispersion length = I;—fl ~ 2 mm, much less than the typical length of a
few centimetres of the sample. Thus, for input beam profiles deviating strongly from the
solitary wave shape, a sample of a few centimetres long allows the formation of parametric
solitary waves. At the same time, with such an ultrashort pulse the higher-order terms in
equations (18), (19), that is, the terms accounting for the self-steepening of the pulse edge
and the nonlinear dispersion come into the play.

We mention that in another physical setting, coupled partial differential equations which
extend the nonlinear Sabdinger equation and describe the dynamics of femtosecond optical
pulses in birefringent fibres were introduced [33, 34] and although, in general, they do not
pass the Painlévtest for integrability, coupled solitary waves were provided by using the
Hirota technique [34].

3. Painlewe singularity structure analysis

In order to check for the integrability of a system of partial differential equations we analyse
whether the system has the Pairdguroperty as introduced by Weistal [24]. The method
involves expanding the solution in a Laurent series about a singular or pole manifold. Also,
the method gives rise to a powerful formalism from which one may deduce the Lax pairs,
the Backlund transformations, the Hirota equations, the motion invariants, symmetries and
commuting flows, and the geometrical structure of the phase space [30].

Next we rewrite the system (18), (19) in the form:

r

lgre = 541 + 419267 +iyiquu +ic1q;, g7 +iaagiqae? =0
(21)
. . o . ; . ;
lg2¢ = 802 — 5 dau + ivagan + e +iys(gd), e =0
where
3k// k/
, 1 (ki/fz + i‘f_j‘z) , 2 o e L, 22)
gp=———-—"""= 12=—+ % g= 4
6 Tlky| wot P wot Pt

Here the subscripts and: denote the partial derivatives with respectitand:.
In this section we perform the Painkevest for the following system of coupled partial
differential equations:

r

iq1 — 26]1n + 9192 + 1Y1q1ur +i01giqa +i02gi,q2 =0

(23)
. . o . .
ig2: —18g2 — ECIZU + qf + 1v2q2: + |V3(‘]f)r =0.

For the sake of simplicity we took the normalized wavevector mismatch paraghetds in
system (21) without restricting the generality of the Paialsingularity structure analysis.

In order to study the integrability properties of system (23), we rewrite it in terms of four
complex functionsz, b, ¢, andd defined byg, = a, g» = b, q7 = ¢, g; = d. Consequently,
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we have the following equations:
ia, — ;a,, ~+ ¢b + iyia;y + iareh, + iaoc,b =0

. . o . .
ib, —16b; — —b;; + a? + iyobu + |V3(02)t =0
2
- . - - _ (24)
—ic, — G + ad — iy1cy — larad; — iapa,d =0

. o . . .
—id, — Edtt +1idd; + ? - iyod; — WS(CZ)t =0

The Painlee analysis in the formulation of Weiss al [24] essentially consists of three
stages: (i) determining the leading-order behaviour; (ii) identifying the resonances, and (iii)
verifying that a sufficient number of arbitrary functions exists without the introduction of
movable critical singularity manifolds. To start with, let us introduce the following series
for the four functions, b, ¢, d:

a=o"y a;(x)d b=®" bi(x)®
j>0 j>0

c=0"Y ci(x)d/ d =0 " di(x)®/

j=0 j=0

(25)

with the Kruskal ansatz [25]:®(x,t) = t — W(x). Herep;,1 < i < 4 are negative
integers. By introducing the above series into equations (23) and equating the leading terms
we obtain:

p1—3=p2+p3—1

p2—3=2p1 -1

p3—3=p1+ps—1

pa—3=2p3—1

(26)

From this system we obtain the unique solutipn= —2,1 < i < 4 and the following
equations for the functiong, bg, co anddp:
12y1a9 + boco(ay + a2) =0
6y2bo + ysa5 =0
12y1c0 + apdo(a1 + a2) =0
6y2do + yact = 0.

(27)

In system (27) not all of the four functions are independent. This can easily be seen, as
independent equations can be chosen for the first two equations of system (27) and the
equation: boc(z) - agdo = 0. Therefore, at this stage we conclude that one of these four
functions is arbitrary. Now we find the resonances, that is, the powers at which the arbitrary
functions can enter into the series. Thus we substitute the following expressions into the
coupled system (23):

a= aocb_z + ajd>-7_2
b=bo® %+ b;dI?
c= ao<1>72 + chI>j’2

d =ap®?+d; /2

(28)
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Keeping the leading-order terms together, we obtain a linear system of four algebraic
equations iru;, b;, c;, andd;:
(i =20 =3 —Da; + [ea(j — 2) — 2] cob; + [2(j — 2) — 201]boc; = 0
(G =2 =3 — Dej + [a1(j — 2) — 2w0]doa; + [e2(j — 2) — 201]apd; =0
v2(J =2 —3)( —Db; + 2y3(j — 4aoa; =0
v2(j —2(j —3)(j — Dd; + 2y3(j — 4)coc; = 0.
To have a non-trivial solution fa;, b;, ¢;, andd;, the corresponding determinant must be
zero:
AGr) = @412 =% =3 - H?
—288[j — 21+ NI+ — 2% —3*( — 4
+148[j — 2(1+r)]? — 144]j — 21+ N]?(j — 2% —3)?=0 (30)
wherer = ay/ay. It is easily verified thatA(j, r) = P1(j, r) P2(j, r), where
Pi(j,r) = (+ D = O +r) = 9j% L+ 1) + j(26r +38) — 48 + 1)] (31)
Po(j,r) = j(j2 =5/ + 18[j2(1+r) — 9j (L +r) + 26r + 14]. (32)
The resonance at = —1 corresponds to the arbitrariness ®fitself and the resonance at
j = 0 corresponds to the fact that one of the four functiegisbo, co, anddy is arbitrary.
Because at least two of the zeros of the polynomiidlj, r) are complex, we conclude that
the coupled system (23) fails to pass the Paialmst.
Next we briefly present the Painlkevanalysis for other two coupled nonlinear partial

differential equations coming from system (23). First, we perform the Pd@rdegularity
analysis for the following equations [6-10]:

(29)

r

ig1e — Sdu + q192=0
. . o 2 (33)
igox —i8q2 — 54 T 41 = 0.

These coupled equations describe the self-action of light in parametric wave interactions
in nonlinear quadratic media in the presence of different group velocities between the
fundamental frequency wave and the second harmonic when the third-order dispersion,
as well as the nonlinear terms which account for the self-steepening of the pulse edge and
the nonlinear dispersion, are negligible.

In this case, in a similar way as before, we found that the equation for the resonances
is as follows

(j+Dj(j =5 —6)(j*—5j+12)(j*—5j + 18 =0. (34)

Because four of the resonances are complex we conclude that this system does not possess
the Painle@ property.

Although system (33) fails to pass the Pairild@est, the existence has recently [20] been
shown of a two-parameter family of ‘bright—bright’ solitary waves which travel at a locked
velocity. These parametric solitary waves are chirped and form due to the interplay of the
second-order dispersion, the nonlinear interaction and the temporal walk-off which comes
from the different group velocities of the interacting waves.

Finally, we perform the Painlévtest for the following system:

r
2
igax —18q2 —

i1y — =911 + q192 + 101gi g + i02q3,q2 = 0

(35)

o

2512tz + qf + iV3(Qf)z =0.
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This system comes from the general system (23) by neglecting the terms accounting for
the third-order dispersion. Imposing the resonances to be integers we abtainas.

Thus, in this case the resonances are found to pe: —1,0,2, 2,2, 2,2, 3. However,

the system does not pass the Paialégst because for the resonarnce= 0 all the four
functions ag, bo, co and dy are fixed instead of one of them being arbitrary. Although
system (35) does not pass the Paigldest, we will be able to find a symbiotic pair of
bright (fundamental frequency) and dark (second harmonic) solitary waves by using the
direct Hirota-like method.

4. Hirota-like method and the exact ‘bright—dark’ solitary wave solutions

In this section we shall find out the exact solitary wave solutions of the following system
of coupled equations by using a Hirota-like direct method [32]:

. r N7 g
i1 — =qui + g2 +id(g}q2). € =0

2, | | (36)
ig2e —18q2 — EQZU + qfe'ﬁ" + iys(qf),éﬁ)‘ =0.

This system comes from the general equations (21) by neglecting the third-order dispersion
terms and takingy; = oy = d.

Recently [19], a family of ‘bright—dark’ parametric solitary waves has been found in a
second-harmonic generation setting. These solitary waves form from the interplay between
the group-velocity difference and the nonlinear interaction between the two waves (the
second-order dispersion at both frequencies being neglected). In the following we find that
the interplay of the second-order dispersion, group-velocity difference, quadratic nonlinearity
and self-steepening effect does permit us to be sustained symbiotic solitary waves that are
of the bright type for the fundamental frequency wave and of the dark type for the second
harmonic.

In order to construct the Hirota-like bilinear form we first introduce the new functions
ay2(x,1):

q1(x, 1) = ax(x, 1) expli(w1t + k1x)]

q2(x, 1) = az(x, 1) expli(wat + K2x)]
wherew; ; are the corrections to the corresponding frequenciescap@re the corrections
to the corresponding wavenumbers. System (36) becomes:

(37)

. r . . .
aix + viay + paar + i=ai — iyiajaz expli(Qr + «x)] + d{ajaz expli(Q2 + kx)]}; =0

2
azy + Vody + woas + i%agn — iyzaf exp[—i(Q2t + kx)] + )/3{(1:% exp[—i(Q2t + «x)]}, =0
(38)
where
) ro?
V1 = —rwy pa=1|k1— =7 ri=1—dw
. aws (39)
V2 = —(8 + awp) M2 =i /(2—&02—7 Y2 =1—yzw

Q:a)z—za)l K:K2—2K1—/3.
Let us now take the Hirota transformation in the form:
F(x, [) E(.X, t)

) = (40)
G(x,1) G(x,t)

ar(x,t) =
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where F, E are complex functions, and is a real function. Using the Hirota bilinear
operators:

_ wer (0 d\[d 9
D"D'(FG) = (ar az> (ax ax) Fx,)G(X', ') |ir=t x=x (41)
system (38) becomes:

*

1 F*E
E(Dx 4+ v1D; + 1) (FG) —iyy—5 2 expli(Q2t + «x)]

*

d 1 F*E ,
+ ( 5 G2 —D,(FG) + d > expli(Qr + Kx)]) =
1 F? . (42)
G2 (Px +v2Di + p2) (EG) —iyz -5 exp[=i (2 + k)]
0 (.ol F?
+o ( 5 Gth(EG) + Vs exp[—i(Qr + Kx)]) =0.
We see that these equations can be satisfied if we impose:
|;D,(FG) + dF*E exp[i(Q + xx)] = 0

.o 2 .
|§D,(EG) + yaF exp[—i(Qt +kx)] =0

(43)
(D, +v1iD, + u1)(FG) — iyt F*E expli(2t + kx)] =0
(Dy + v2D; + u2)(EG) — iya F2 exp[—i(Q2t + kx)] = 0.
From (43) we easily obtain:
(Dy + p1D; + n1)(FG) =0 (a4)
(Dy + p2D; + 12)(EG) =0
wherep; = vy — 2% and,oz = vy — % In order to obtain the exact solitary wave solutions,
we proceed in the standard way. Thus, we assume:
F=c¢fi G=1+¢? g1 E260+8261 (45)

wheree is an arbitrary parameter which is finally set equal to 1. Herés a complex
constant,g; is a real function and; ande; are complex functions. Substituting (45) into
system (43) and then collecting the terms with the same powewia are left with a system
of coupled equations fofi, g1, ep ande;. We seek for the functiong;, f1 ande; having
an exponential dependence of the variableends. From the compatibility conditions for
the system of coupled equations ffr, g1, e; andeg it results that:

K—&u—%—
2 2 2 -
v (46)
T o0 T2 o),

i(k + p122) + 211 =0.
One can easily find the expressions far f1, e andeo:
g1(x, 1) = exp(2f) (47)

n or 12 [
fi=— () exp(é) exp[(m +Kx + 9)} (48)
p1 \dys 2
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er=(-57) (L +15 ) eenrexe[i (5 +0)] (@9)
o= (~57) (-2 +15 )exfi (5 +0)]. (50)

By using these expressions one obtains:

n ar \Y? i
ai(x,t) = 2, (d;@) sech(§) exp[z(szt +kx + 9)} (51)

2 2 1/2 . .
_ r n Q sinh(¢ + ip) T
as(x, 1) = (—ﬂ) [(m) + 4} ~ codhe) eXp[I (E +9)] (52)
where
! Qo1 roi r
SZH(x—>+Eo <p=arctan<> pr=——t
P1 2n

with Q@ = wy — 2w4, 1, @, 0 being integration constants. Finally, we obtain the following
expressions foyg »:

1/2 .
)= - ("”’) sech) exp|:|(w2t ¥ icox — Bx + 9)} (53)
2p1 \dys 2
r n 2 Q2 v sinh(¢ + ip) b4
qa(x,1) = (_g> |:(,01> + 4:| Tf(é) eXp[I (0)2[ + Kkox + E +9>] . (54)
From constraints (46) we obtain the following system of equationsofor.
rwi dwy
L e 55
4 2 B (55)
rwy awr r o
— - —— =5 =+ —. 56
2 2 2d + 2y3 (56)

Here we have two distinct cases to analyse:

(@) If d = 2y3 thenw; = %,3 + %ws, wy being a free parameter. In addition, we have
a compatibility condition for the linear system (55), (5@; =46+ 2‘;;". In this case the
solution (53), (54) constitutes a one-parameter family of bright—dark solitary waves.

(b) If d # 2y3 thenw; » can be easily obtained by solving the linear system (55), (56).
Thus, in this case the corrections ; to the frequencies of the fundamental wave and the
second harmonic are fixed and the solution (53), (54) has no free parameters.

The modulational instability of the background continuous wave is the preferential
mechanism of instability of coupled solitary waves which contain dark components. We
mention that the symbiotic ‘bright—dark’ pair of solitary waves found recently in [19] can be
modulationally stable. We expect that the ‘bright—dark’ solitary wave we found can also be
modulationally stable. However, the rigorous stability analysis of the ‘bright—dark’ solitary
waves we found is an important issue and deserves a separate study.

In figures 1 and 2 we show the shape of the pair of ‘bright—dark’ solitary waves for
the following set of parameters: = —1,d = -1, =1, y3 = 1, % =1,8 =0. For
this choice of the parameters the corrections to the frequencies are fixed and there are no
free parameters of the exact solitary wave solution. In figure 1 we show the variation of
the intensity as a function of time for the value of the normalized wavevector mismatch
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Figure 1. The shape of the intensity of the fundamental wave (full curve) and the second
harmonic (dotted curve) for the following set of parameters: —1,d = -1, 0 =1, y3 =1,

P1

2 — 1,8 =0. Here the normalized wavevector mismatch paramgter0.
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Figure 2. Same as in figure 1 but with the normalized wavevector mismatch paraghete.

parameterg = 0. In this case the intensities of the fundamental wave and the second

harmonic have the simple expressions:

112 = } seck(r)
lg2l? = J tanff ().

(57)

Figure 2 presents the shape of the intensities of both waveg fer2. In this case the
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fundamental wave and second harmonic have the following intensities:
lg1)* = § sech(r)
g2/ = i[tant?(r) + 4].

We see that for this choice of parameters the background intensity for the dark wave increases
with the mismatch parametg.

(58)

5. Conclusions

In this paper we have derived the coupled system of partial differential equations describing

pulse propagation of ultrashort pulses in a quadratic medium, by keeping linear terms that
account for both second- and third-order dispersion and nonlinear terms describing both
nonlinear dispersion and self-steepening of the pulse edge. When the third-order dispersion
is negligible, by using a Hirota-like method, we have found zero- and one-parameter families

of symbiotic solitary waves. This parametric solitary wave has the interesting property that

it is of a bright-type concerning the fundamental wave and of a dark-type concerning the

second harmonic.
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